if m<AOC = 49 degress, m<BOC = 2x+10, and m<AOB = 4x-15, find the degree measure of <BOC and <AOB. The diagram is not to scale

A-> m<BOC= 21 ; m<AOB = 28
B-> m<BOC= 18; m<AOB = 31
C-> m<BOC= 28; m<AOB = 21
D-> m<BOC = 31; m<AOB = 18

1 answer

We are given that m<AOC = 49 degrees. Since AOC, BOC, and AOB form a straight line, we know that the sum of their degree measures is 180 degrees.

Therefore, m<BOC + m<AOB + m<AOC = 180 degrees.

Substituting the given values, we get:

(2x+10) + (4x-15) + 49 = 180.

Simplifying the equation, we get:

6x + 44 = 180.

Subtracting 44 from both sides, we get:

6x = 136.

Dividing both sides by 6, we get:

x = 22.6667.

To find m<BOC, we substitute the value of x into m<BOC = 2x + 10:

m<BOC = 2(22.6667) + 10 = 56.3333.

To find m<AOB, we substitute the value of x into m<AOB = 4x - 15:

m<AOB = 4(22.6667) - 15 = 79.6667.

Therefore, the degree measure of <BOC is approximately 56.3333 degrees, and the degree measure of <AOB is approximately 79.6667 degrees.

None of the given answer choices match the calculated values.