Asked by Jake
if f is an exponential function, and f(5)=20 and f(9) = 14, use the add-multiply property to calculate f(13),f(17), and f(21). Show your method
Answers
Answered by
bobpursley
there is a difference of x=+4 between 5, 9
There is a multiply difference of 14/20=.7 between the two.
f(13)=14*.7
f(17)=14*.7*.7
f(21)=14(.7*.7*.7)
Answered by
Reiny
let f(x) = a(b^x) or
y = a(b^x)
given: when x=5, y=20
20 = a b^5
given: when x=9, y=14
14 = a b^9
divide the 2nd by the first:
b^4 = 14/20 = 0.7
b = (0.7)^.25 = appr .91469
sub into 20 = a b^5
20 = a(.91469)^5
a = 31.236
f(x) = 31.236 (.91469)^x
f(13) = 31.236(.91469)^13 = 9.8
you do the button-pushing for the rest
Note, I used the memory locations of my calculator to store all the supplied decimal values for both a and b
y = a(b^x)
given: when x=5, y=20
20 = a b^5
given: when x=9, y=14
14 = a b^9
divide the 2nd by the first:
b^4 = 14/20 = 0.7
b = (0.7)^.25 = appr .91469
sub into 20 = a b^5
20 = a(.91469)^5
a = 31.236
f(x) = 31.236 (.91469)^x
f(13) = 31.236(.91469)^13 = 9.8
you do the button-pushing for the rest
Note, I used the memory locations of my calculator to store all the supplied decimal values for both a and b
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.