Asked by Alaska Diamond
I need to find the x coordinate of the vertex of parabola defined by
f(x)= -5x^2 + 9x + 2
Can you please show steps. Thank you
f(x)= -5x^2 + 9x + 2
Can you please show steps. Thank you
Answers
Answered by
Steve
x = -b/2a = -9/-10 = 9/10
To extract it from scratch, complete the square
f(x) = -5x^2 + 9x + 2
= -5(x^2-9/5) + 2
= -5(x^2-9/5 + (9/10)^2) + 2 + 5(9/10)^2
= -5(x - 9/10)^2 + stuff
vertex at x = 9/10
It's just easier to remember that the vertex is at -b/2a
Recall the quadratic formula:
x = -b/2a +/- sqrt(stuff)
This gives the roots, which are equally distant from the vertex, where x = -b/2a.
To extract it from scratch, complete the square
f(x) = -5x^2 + 9x + 2
= -5(x^2-9/5) + 2
= -5(x^2-9/5 + (9/10)^2) + 2 + 5(9/10)^2
= -5(x - 9/10)^2 + stuff
vertex at x = 9/10
It's just easier to remember that the vertex is at -b/2a
Recall the quadratic formula:
x = -b/2a +/- sqrt(stuff)
This gives the roots, which are equally distant from the vertex, where x = -b/2a.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.