Asked by Lolita
I need help solving this problem, I have followed the sequence forward and backwards but can't seem to find the solution. I believe it's the pigeon hole theorem. Here's the problem;
Let A be any set of twenty integers chosen from the arithmetic progression 1, 4, 7, ...,100. Prove that there must be two distinct integers in A whose sum is 104.
100 = 1 + 3(n-1) = 3n -2,
n = 34
Totally, there are 34 terms from
1,4,..,100
Among them there are 16 pairs can from 104 are:
1
4, 100
7, 97
10, 94
...
46, 58
49, 55 (=3*16+1, 103-3*16)
52
as (boy girl)
If no two chosen numbers whose sum
is 104, then we only can choose one
from the above pairs.
That is, we can at most choose
16+1+1 = 18 numbers among 34 where
no two whose sum is 104.
However, we choose 20 > 18 numbers
so at least two with sum 104.
This answer may be late, since I saw
this question a short while ago.
Kenny
Let A be any set of twenty integers chosen from the arithmetic progression 1, 4, 7, ...,100. Prove that there must be two distinct integers in A whose sum is 104.
100 = 1 + 3(n-1) = 3n -2,
n = 34
Totally, there are 34 terms from
1,4,..,100
Among them there are 16 pairs can from 104 are:
1
4, 100
7, 97
10, 94
...
46, 58
49, 55 (=3*16+1, 103-3*16)
52
as (boy girl)
If no two chosen numbers whose sum
is 104, then we only can choose one
from the above pairs.
That is, we can at most choose
16+1+1 = 18 numbers among 34 where
no two whose sum is 104.
However, we choose 20 > 18 numbers
so at least two with sum 104.
This answer may be late, since I saw
this question a short while ago.
Kenny
Answers
There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.