I have a question my brother asked me but I need a math expert.

You have two interlocking circles and the radius of circle B goes through the center of circle A and of course the radius of circle A goes through the center of circle B. The radius of each circle is 30 feet. Now, if you draw a line C from the top center of circle A across to the top center of circle B, the line would be 60 feet long and would leave an area below it created by the line C and part of an arc of circle A and part of an arc of circle B. Please give me the area of that space in square feet or the formula for how it's worked. Thanks.

4 answers

We will describe the problem as follows.

Two circles A,B of equal radii (r=30') are centred at P, Q, distance r apart.

Points R and S on circles A, B are such that RS form a common tangent to both circles. Hence PRSQ form a square of side r.

Arcs are drawn with centre P and Q, radius r, which intersect at point D inside the square.

Hence Δ PDQ is an equilateral triangle of side r.

The required area bounded by the side RS , arcs RD and DS will be equal to

Area of square PRSQ - Area of ΔADQ - area of sector RPD - Area of sector SQD.

Note that sectors RPD and SQD have centrai angles of (90-60)=30°.
Typo corrections:

Area of square PRSQ - Area of ΔPDQ - area of sector RPD - Area of sector SQD.

Note that sectors RPD and SQD have central angles of (90-60)=30°.
Many thanks.
You're welcome!
Similar Questions
    1. answers icon 1 answer
  1. read the expert and answer the question.Whoever does right, whether male or female, and is a believer, also to enter the garden.
    1. answers icon 9 answers
  2. here is the question:Freida must take a 4-hour exam containing 200 questions, 50 of which are math. Twice as much time should be
    1. answers icon 6 answers
  3. 4 of 184 of 18 Items06:06 Question "Kin" by Carl Sandburg Brother, I am fire Surging under the ocean floor. I shall never meet
    1. answers icon 1 answer
more similar questions