Asked by jane
i did this problem and it isn't working out, so i think i'm either making a dumb mistake or misunderstanding what it's asking.
A particle moves along the x axis so that its velocity at any time t greater than or equal to 0 is given by v(t) = 1 - sin(2pi*t).
a. Acceleration a(t) of the particle at any time t?
i said that acceleration was the derivative of velocity, so i took the derivative of the velocity function.
v(t) = 1 - sin(2pi*t)
v'(t) = -cos(2pi*t) x 2pi
a(t) = -2pi*cos(2pi*t)
b. Values of t between 0 and 2 where the particle is at rest?
i said it was at rest when velocity = 0.
0 = 1 - sin(2pi*t)
1 = sin(2pi*t)
sin(pi/2) = 1, so...
2pi*t = pi/2
4pi*t = pi
4t = 1
t = 1/4
c. Position x(t) of the particle at any time t if x(0) = 0?
i didn't understand the part about x(0) = 0. i kind of ignored it and it didn't work out. i figured that the position function was the anti-derivative of the velocity function and did:
anti-derivative of 1 - sin(2pi*t)
1/2pi x anti-derivative of 1 - sin(2pi*t)
1/2pi (t + cos(2pi*t)) = x(t)
but that doesn't equal 0 when t = 0. help?
A particle moves along the x axis so that its velocity at any time t greater than or equal to 0 is given by v(t) = 1 - sin(2pi*t).
a. Acceleration a(t) of the particle at any time t?
i said that acceleration was the derivative of velocity, so i took the derivative of the velocity function.
v(t) = 1 - sin(2pi*t)
v'(t) = -cos(2pi*t) x 2pi
a(t) = -2pi*cos(2pi*t)
b. Values of t between 0 and 2 where the particle is at rest?
i said it was at rest when velocity = 0.
0 = 1 - sin(2pi*t)
1 = sin(2pi*t)
sin(pi/2) = 1, so...
2pi*t = pi/2
4pi*t = pi
4t = 1
t = 1/4
c. Position x(t) of the particle at any time t if x(0) = 0?
i didn't understand the part about x(0) = 0. i kind of ignored it and it didn't work out. i figured that the position function was the anti-derivative of the velocity function and did:
anti-derivative of 1 - sin(2pi*t)
1/2pi x anti-derivative of 1 - sin(2pi*t)
1/2pi (t + cos(2pi*t)) = x(t)
but that doesn't equal 0 when t = 0. help?
Answers
Answered by
Reiny
in b) you were right to find
t = 1/4
but remember the period of 1 - sin(2pi*t)
is 2pi/2pi = 1
so another solution would be 1/4 + 1 or
t = 5/4
so the times between 0 and 2 when the object is at rest is
t = 1/4 and t = 5/4
for c) if
v(t) = 1 - sin(2pi*t)
then x(t) = t + (1/2pi)cos(2pi*t) + c
but you were given x(0) = 0
0 = 0 + (1/2pi)cos(0) + c
0 = )1/2pi) + c
c = -1/(2pi)
so x(t) = t + (1/2pi)cos(2pi*t) - 1/(2pi)
t = 1/4
but remember the period of 1 - sin(2pi*t)
is 2pi/2pi = 1
so another solution would be 1/4 + 1 or
t = 5/4
so the times between 0 and 2 when the object is at rest is
t = 1/4 and t = 5/4
for c) if
v(t) = 1 - sin(2pi*t)
then x(t) = t + (1/2pi)cos(2pi*t) + c
but you were given x(0) = 0
0 = 0 + (1/2pi)cos(0) + c
0 = )1/2pi) + c
c = -1/(2pi)
so x(t) = t + (1/2pi)cos(2pi*t) - 1/(2pi)
Answered by
jane
omg i can't believe i just forgot c in part c. it's even called part c!
and thank you for the help with part b. i completely forgot about that!
and thank you for the help with part b. i completely forgot about that!
Answered by
Anonymous
Let R be the region bounded by the y-axis and the graph of y=xcubed divided by 1+xsquared and y=4-2x,as shown inthe figure above.
find the area of R
find the volume of the solid generated when R is revolved about the x-axis
find the area of R
find the volume of the solid generated when R is revolved about the x-axis
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.