Asked by Maria
Hello,
I'm having trouble with this exercise. Can you help me?
Integral of (x* (csc x)^2)dx
I'm using the uv - integral v du formula. I tried with u= (csc x)^2 and used some trigonometric formulas, but the expression became too complicated, I couldn't continue working. Then I tried with u=x, but the same happened.
Thank you in advance.
You are on the right track using integration by parts. Let u = x and let dv = csc^2 x dx = (1/sin^2 x) dx
du = x
v = -cot x (You will have to prove that to yourself)
Integral u dv = uv - Integal v du
= - cot x - Integral (-cot x dx)
= - cot x + log sin x
You will have to prove that Integral of -cot x dx yourself also.
I have verified the steps and final answer with a table of integrals
I'm having trouble with this exercise. Can you help me?
Integral of (x* (csc x)^2)dx
I'm using the uv - integral v du formula. I tried with u= (csc x)^2 and used some trigonometric formulas, but the expression became too complicated, I couldn't continue working. Then I tried with u=x, but the same happened.
Thank you in advance.
You are on the right track using integration by parts. Let u = x and let dv = csc^2 x dx = (1/sin^2 x) dx
du = x
v = -cot x (You will have to prove that to yourself)
Integral u dv = uv - Integal v du
= - cot x - Integral (-cot x dx)
= - cot x + log sin x
You will have to prove that Integral of -cot x dx yourself also.
I have verified the steps and final answer with a table of integrals
Answers
There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.