Hello.

I am trying to simplify the problem, (tan^2x-sec^2x)/cosx, but I am unsure how. Does anyone have any formulas or starting moves for me to begin to simplify this problem, using basic identities?

2 answers

Sure, I can help! Let's start by using the identity:

tan^2x + 1 = sec^2x

Using this identity, we can rewrite the numerator as:

tan^2x - sec^2x = tan^2x - (tan^2x + 1) = -1

So now our expression becomes:

-1/cosx

We can further simplify this by using the identity:

secx = 1/cosx

Therefore, our final simplified expression is:

-secx
takes 3 steps:
(tan^2x-sec^2x)/cosx
= (sec^2 x - 1 - sec^2 x)/cos x
= -1/cosx
= -secx

or, if you are not familiar with the identity used, often just changing
everything to sines and cosines will work:

(tan^2x-sec^2x)/cosx
( sin^2 x/cos^2 x - 1/cos^2 x) / cosx
= ( (sin^2 x - 1)/cos^2 x )/cosx
= - cos^2 x / cos^3 x
= -1/cosx
= -secx
Similar Questions
  1. Simplify #3:[cosx-sin(90-x)sinx]/[cosx-cos(180-x)tanx] = [cosx-(sin90cosx-cos90sinx)sinx]/[cosx-(cos180cosx+sinx180sinx)tanx] =
    1. answers icon 1 answer
  2. Simplify #1:cscx(sin^2x+cos^2xtanx)/sinx+cosx = cscx((1)tanx)/sinx+cosx = cscxtanx/sinx+cosx Is the correct answer
    1. answers icon 1 answer
  3. Simplify #1:cscx(sin^2x+cos^2xtanx)/sinx+cosx = cscx((1)tanx)/sinx+cosx = cscxtanx/sinx+cosx Is the correct answer
    1. answers icon 4 answers
  4. Use the fundamental identities to simplify the expression.csc Q / sec Q so this would be 1/sinx / 1/cosx and then 1/sinx times
    1. answers icon 1 answer
more similar questions