Graph the solutions for the inequality: −3x+1≤−47 (2 points) Responses Question 10 9. A student claims that graph below represents the solutions to the inequality: −4<x What was the student's mistake? (1 point) Responses The student did x is less than -4, when the variable is on the other side; -4 is less than x so x is greater than -4 The student did x is less than -4, when the variable is on the other side; -4 is less than x so x is greater than -4 The student did not make a mistake; this is the correct graph of the inequality The student did not make a mistake; this is the correct graph of the inequality The student should have multiplied by a negative and switched the direction of the arrow on the graph to go right instead of left The student should have multiplied by a negative and switched the direction of the arrow on the graph to go right instead of left The student should have filled in the point at -4 to show the solution x could be equal to -4

1 answer

To solve the first inequality \(-3x + 1 \leq -47\), we can follow these steps:

  1. Subtract 1 from both sides: \[ -3x \leq -47 - 1 \] \[ -3x \leq -48 \]

  2. Divide both sides by -3. Remember, when we divide by a negative number, we flip the inequality sign: \[ x \geq \frac{-48}{-3} \] \[ x \geq 16 \]

So the solutions for the inequality \( -3x + 1 \leq -47 \) is \( x \geq 16 \).

To graph this solution on a number line:

  • Draw a number line.
  • Put a closed circle (or dot) at 16 to signify that 16 is included in the solution (since it's \( \geq\)).
  • Shade the line to the right of 16 to show all numbers greater than 16 are also solutions.

Regarding the second part of your question about the student's mistake regarding the inequality \( -4 < x \):

The correct interpretation of \( -4 < x \) is that \( x\) is greater than \(-4\). The correct graph for this inequality should have an open circle at -4 (indicating that -4 is not included) and should extend to the right.

If the student's graph shows \( x < -4\) instead, the mistake likely comes from misunderstanding the direction of the inequality. Therefore, the correct response would be:

The student did \(x\) is less than \(-4\), when the variable is on the other side; \(-4\) is less than \(x\) so \(x\) is greater than (-4.

Similar Questions
    1. answers icon 1 answer
  1. Graph the solutions of the inequality on a number line.Describe the solution to the inequality. r < –3 closed dot at –3;
    1. answers icon 1 answer
  2. Use the image to answer the question.Paolo solved an inequality and graphed the solution on the number line. Which of the
    1. answers icon 1 answer
  3. This graph shows a student’s distance from home over time.Which statements best describe the student’s journey? (2 points)
    1. answers icon 1 answer
more similar questions