Asked by Katelyn
Given the equation xy = 2, set up an integral to find the length of path from x = a to x = b and enter the integrand below.
I did the integral from b to a and set it equal to the sqrt(1+4/x^4), because I found y to equal 2/x and the derivative to be -2/x^2, but I think I am solving the problem wrong.
I did the integral from b to a and set it equal to the sqrt(1+4/x^4), because I found y to equal 2/x and the derivative to be -2/x^2, but I think I am solving the problem wrong.
Answers
Answered by
drwls
y = 2/x (The is the integrand). The derivative is -2/x^2
When calculating the length of a line, you have to integrate sqrt[1 + (dy/dx)^2], which in this case is
sqrt[1 + 4/x^4]. That function is the integrand.
Your last step is wrong.
The line length from a to b is the difference in the values of the INTEGRAL of sqrt[1 + 4/x^4] dx at the two end points.
I don't have a clue abut how to integrate that function, but they are only asking you to set up the integral anyway.
When calculating the length of a line, you have to integrate sqrt[1 + (dy/dx)^2], which in this case is
sqrt[1 + 4/x^4]. That function is the integrand.
Your last step is wrong.
The line length from a to b is the difference in the values of the INTEGRAL of sqrt[1 + 4/x^4] dx at the two end points.
I don't have a clue abut how to integrate that function, but they are only asking you to set up the integral anyway.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.