Given PSTQ is a trapezoid, ST = 4, PQ = 25, PS = 13, TQ = 20

Find: Area of PSTQ

1 answer

To find the area of trapezoid PSTQ, we can use the formula for the area of a trapezoid:

Area = (1/2) * (b1 + b2) * h

where b1 and b2 are the lengths of the two parallel bases and h is the height of the trapezoid.

In this case, the lengths of the parallel bases are PQ = 25 and ST = 4, and the height of the trapezoid can be found by drawing an altitude from P to line TQ, forming a right triangle.

Using Pythagorean theorem in the right triangle PST, we can find the height:

PS^2 = PT^2 + TS^2
13^2 = h^2 + 20^2
169 = h^2 + 400
h^2 = 231
h ≈ √231 ≈ 15.2

Now we can plug in the values into the formula:

Area = (1/2) * (25 + 4) * 15.2
Area = (1/2) * 29 * 15.2
Area = 217.6

Therefore, the area of trapezoid PSTQ is 217.6 square units.
Similar Questions
    1. answers icon 1 answer
    1. answers icon 1 answer
  1. Trapezoid ABCDhas vertices A(–5 , 10) , B(10 , 10) , C(5 , 5) , and D(0 , 5) . Graph the trapezoid and its image after a
    1. answers icon 7 answers
  2. Trapezoid ABCD is dilated to create trapezoidby a scale factor of 1/2 . Find the perimeter and area of both figures. Dilation of
    1. answers icon 1 answer
more similar questions