Given point A (2, 4) on the triangle in Quadrant I, where is the new point if the triangle is rotated 90 degrees counterclockwise?

(1 point)
Responses

(−4,−2)
left parenthesis negative 4 comma negative 2 right parenthesis

(−4, 2)
left parenthesis negative 4 comma 2 right parenthesis

(−2,−4)
left parenthesis negative 2 comma negative 4 right parenthesis

(4,−2)

3 answers

To rotate a point 90 degrees counterclockwise, we swap the x and y coordinates and negate the new x coordinate.

In this case, if we swap the x and y coordinates of A, we get (4, 2). Negating the new x coordinate gives us (-4, 2).

Therefore, the new point after rotating 90 degrees counterclockwise is (-4, 2).
are you sure..
I apologize for the confusion. Let's reevaluate the rotation.

To rotate a point 90 degrees counterclockwise, we can apply the following transformation:

New x-coordinate = -old y-coordinate
New y-coordinate = old x-coordinate

For point A(2, 4), the new x-coordinate would be -4 and the new y-coordinate would be 2.

Therefore, the new point after rotating 90 degrees counterclockwise is (-4, 2).

So, the correct answer is (−4, 2) or 'left parenthesis negative 4 comma 2 right parenthesis'.