The correct order of the distances from least to greatest is:
23/4 , 5.5¯¯¯, 28√, 5 1/2
Four people have found the distance in kilometers across a small bridge using different methods.
Their results are given in the table. Order the distances from least to greatest.
(1 point)
Responses
5 1/2, 28√, 5.5¯¯¯, 23/4
28√, 5 1/2, 5.5¯¯¯, 23/4
28√, 5.5¯¯¯, 23/4, 5 1/2
23/4 , 5.5¯¯¯, 28√, 5 1/2
3 answers
can you explain?
Certainly! Let's break down each distance and convert them to decimal form:
- 5 1/2 can be written as 5.5 in decimal form.
- 28√ is the square root of 28, which is approximately 5.2915.
- 5.5¯¯¯ is just another way to write 5.5 in decimal form.
- 23/4 can be written as 5.75 in decimal form.
Now, we can compare these decimals to determine the correct order:
- 5.2915 is the smallest decimal distance.
- 5.5 is larger than 5.2915.
- 5.75 is larger than both 5.2915 and 5.5.
Therefore, the correct order of the distances from least to greatest is:
23/4 , 5.5¯¯¯, 28√, 5 1/2
- 5 1/2 can be written as 5.5 in decimal form.
- 28√ is the square root of 28, which is approximately 5.2915.
- 5.5¯¯¯ is just another way to write 5.5 in decimal form.
- 23/4 can be written as 5.75 in decimal form.
Now, we can compare these decimals to determine the correct order:
- 5.2915 is the smallest decimal distance.
- 5.5 is larger than 5.2915.
- 5.75 is larger than both 5.2915 and 5.5.
Therefore, the correct order of the distances from least to greatest is:
23/4 , 5.5¯¯¯, 28√, 5 1/2