Asked by Anonymous
For what values of k will the line 2x+9y+k=0 be normal to the hyperbola given by 3x^(2)-y^(2)=23? Justify your answer
Answers
Answered by
Reiny
I will give you the steps.
1. find dy/dx for the hyperbola
(you should get dy/dx = 3x/y)
2. if 2x + 9y = k is a normal, then its slope is -2/9
so the slope of the tangent at the point of contact should be 9/2
3. set dy/dx = 9/2 and solve for x
4 sub in that x into the original hyperbola and solve
( I got y = ±2)
5. find the x's for each of those two y's.
6. You now have the points of contact of the tangents, <b>and the points of contact of the normals.</b>
7 sub in the points from #5 into the original normal equation to find k
There are of course two of those.
1. find dy/dx for the hyperbola
(you should get dy/dx = 3x/y)
2. if 2x + 9y = k is a normal, then its slope is -2/9
so the slope of the tangent at the point of contact should be 9/2
3. set dy/dx = 9/2 and solve for x
4 sub in that x into the original hyperbola and solve
( I got y = ±2)
5. find the x's for each of those two y's.
6. You now have the points of contact of the tangents, <b>and the points of contact of the normals.</b>
7 sub in the points from #5 into the original normal equation to find k
There are of course two of those.
Answered by
Benevolent Ben
Alright, this one involves a fair bit of complicated calculus, so I'm assuming you have the basics down:
First, some definitions. A normal line is a line that is perpendicular to another function at a given point. That means that the slope of the normal line is the negative reciprocal of the derivate at a given point.
We can find the slope of the given normal line (2x+9y+k=0): slope of the normal is -2/9
This means that the derivative of 3x^(2)-y^(2)=23 at some point is equal to the negative reciprocal of (-2/9), or (9/2). Let us first find the general derivative of 3x^(2)-y^(2)=23. By doing implicit differentiation, we get dy/dx=3x/y .
So we know that 3x/y=9/2. If we do some cross multiplication, it follows that y=(2/3)x. Now we can actually substitute for why into our polynomial and solve for x. By substitute I mean do this: 3x^(2)-((2/3)x)^(2)=23 [substituting (2/3)x in for y]. When we solve this for x, we get: x=+3, -3. Because y=(2/3)x, y=+2,-2.
So now we have the two points where the derivative of our polynomial has a slope of (9/2): points (3, 2) and (-3,-2)
Now that we have these points, plug the values back into 2x+9y+k=0:
2(3)+9(2)+k=0, k=-24
2(-3)+9(-2)+k=0, k=24
So k=+24,-24
First, some definitions. A normal line is a line that is perpendicular to another function at a given point. That means that the slope of the normal line is the negative reciprocal of the derivate at a given point.
We can find the slope of the given normal line (2x+9y+k=0): slope of the normal is -2/9
This means that the derivative of 3x^(2)-y^(2)=23 at some point is equal to the negative reciprocal of (-2/9), or (9/2). Let us first find the general derivative of 3x^(2)-y^(2)=23. By doing implicit differentiation, we get dy/dx=3x/y .
So we know that 3x/y=9/2. If we do some cross multiplication, it follows that y=(2/3)x. Now we can actually substitute for why into our polynomial and solve for x. By substitute I mean do this: 3x^(2)-((2/3)x)^(2)=23 [substituting (2/3)x in for y]. When we solve this for x, we get: x=+3, -3. Because y=(2/3)x, y=+2,-2.
So now we have the two points where the derivative of our polynomial has a slope of (9/2): points (3, 2) and (-3,-2)
Now that we have these points, plug the values back into 2x+9y+k=0:
2(3)+9(2)+k=0, k=-24
2(-3)+9(-2)+k=0, k=24
So k=+24,-24
Answered by
Anonymous
Awesome, thanks for the help!
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.