For a moon orbiting its planet, rp is the shortest distance between the moon and its planet and ra is the longest distance between the moon and its planet. What is a moon's orbital eccentricity if rp is equal to 0.27ra ?(1 point)

Responses

0.57
0.57

0.65
0.65

0.48
0.48

0.27

1 answer

The orbital eccentricity \( e \) of an orbit can be determined from the relationship between the closest approach (periapsis, \( r_p \)) and the furthest distance (apoapsis, \( r_a \)). The formula to calculate eccentricity is:

\[ e = \frac{r_a - r_p}{r_a + r_p} \]

Given that \( r_p = 0.27 r_a \), we can express \( r_a \) in terms of \( r_p \):

\[ r_a = \frac{r_p}{0.27} \]

Substituting \( r_a \) into the eccentricity formula:

  1. First express \( r_a \): \[ r_a = \frac{r_p}{0.27} \]

  2. Substitute this and \( r_p \) into the eccentricity formula: \[ e = \frac{r_a - r_p}{r_a + r_p} = \frac{\left( \frac{r_p}{0.27} \right) - r_p}{\left( \frac{r_p}{0.27} \right) + r_p} \]

  3. Factor out \( r_p \): \[ e = \frac{r_p \left( \frac{1}{0.27} - 1 \right)}{r_p \left( \frac{1}{0.27} + 1 \right)} \]

  4. This simplifies to: \[ e = \frac{\frac{1}{0.27} - 1}{\frac{1}{0.27} + 1} = \frac{\frac{1 - 0.27}{0.27}}{\frac{1 + 0.27}{0.27}} = \frac{0.73}{1.27} \]

  5. Calculating \( \frac{0.73}{1.27} \): \[ e \approx 0.574 \]

Therefore, the closest answer to this calculation from the provided options is:

0.57

Similar Questions
    1. answers icon 1 answer
  1. For a moon orbiting its planet, rpis the shortest distance between the moon and its planet and ra is the longest distance
    1. answers icon 7 answers
  2. For a moon orbiting its planet, rpis the shortest distance between the moon and its planet and ra is the longest distance
    1. answers icon 1 answer
    1. answers icon 1 answer
more similar questions