Asked by Anonymous
Find the surface area of the solid generated by rotating the area between the y-axis, (x^2/y) + y = 1, and -1≤y≤0 is rotated around the y-axis.
Answers
Answered by
Anonymous
you have a circle:
x^2 + (y-1/2)^2 = 1/4
except that as originally written, y cannot be zero.
Now, since the range of y is (0,1], there is no part of the graph below the x-axis. Note that any y < 0 will produce a value such that (y-1/2)^2 > 1/4. That means that x^2 must be negative.
Is this a trick question?
If there's a typo, and you want 0<y<=1, then you are just rotating a semi-circle of radius 1/2, whioch will give you a sphere.
x^2 + (y-1/2)^2 = 1/4
except that as originally written, y cannot be zero.
Now, since the range of y is (0,1], there is no part of the graph below the x-axis. Note that any y < 0 will produce a value such that (y-1/2)^2 > 1/4. That means that x^2 must be negative.
Is this a trick question?
If there's a typo, and you want 0<y<=1, then you are just rotating a semi-circle of radius 1/2, whioch will give you a sphere.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.