find the slope from this graph: (-2, 6), (2, -2)

3 answers

To find the slope of a graph, we use the formula:

slope = (y2 - y1) / (x2 - x1)

Using the given points:

(x1, y1) = (-2, 6)
(x2, y2) = (2, -2)

slope = (-2 - 6) / (2 - (-2))
slope = (-8) / (2 + 2)
slope = -8 / 4
slope = -2

Therefore, the slope of the graph is -2.
find the slope for this graph: (-2, 6) (-2, 3)
To find the slope of a graph, we use the formula:

slope = (y2 - y1) / (x2 - x1)

Using the given points:

(x1, y1) = (-2, 6)
(x2, y2) = (-2, 3)

slope = (3 - 6) / (-2 - (-2))
slope = (-3) / (0)

The denominator is 0, which means the slope is undefined. This indicates that the graph is a vertical line.
Similar Questions
  1. in a making a graph showing the stretch of a spring:Plot a graph of force vs. stretch. Find the slope. The Slope of the graph is
    1. answers icon 2 answers
    1. answers icon 1 answer
  2. Graph the line containing the given pair of points and find the slope(1,0) , (-5, -3) -3-0/-5-1 + -3/4 so the slope would be
    1. answers icon 1 answer
  3. 1. Look at the graph{Can't show graph but coordinates are (-1,-2) and (2,1)} The slope of the line is ______. A. Positive * B.
    1. answers icon 4 answers
more similar questions