Find the slope and y-intercept that has infinite solutions to the equation Click Here for Help Video

8
π‘₯
+
2
𝑦
=
25
8x+2y=25

The slope would be
.

The y-intercept would be
. (Do not list as a coordinate point.)

1 answer

To find the slope and y-intercept of the equation \(8x + 2y = 25\) that has infinite solutions, we first need to express the equation in slope-intercept form, which is \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept.

  1. Start with the original equation: \[ 8x + 2y = 25 \]

  2. Isolate \(y\) on one side. First, subtract \(8x\) from both sides: \[ 2y = -8x + 25 \]

  3. Now divide every term by \(2\) to solve for \(y\): \[ y = -4x + 12.5 \]

From this form, we can identify the slope and the y-intercept:

  • The slope (\(m\)) is \(-4\).
  • The y-intercept (\(b\)) is \(12.5\).

Thus:

  • The slope would be \(-4\).
  • The y-intercept would be \(12.5\).
Similar Questions
  1. How Many Solutions? Quick Check3 of 53 of 5 Items Question Solve for x to determine if the equation has one, none, or infinite
    1. answers icon 2 answers
    1. answers icon 1 answer
  2. Solve for x to determine if the equation has one, none, or infinite solutions.5(2x+2)βˆ’7x=3x+6 (1 point) Responses The equation
    1. answers icon 2 answers
  3. Slope-Intercept Form Quick Check5 of 55 of 5 Items Question Identify the slope and the y-intercept of the equation 4xβˆ’3y=12.(1
    1. answers icon 1 answer
more similar questions