Find the point on the graph of y = x^2 + 1 that’s closest to the point 8, 1.5. Hint: Remember the distance formula.

3 answers

Distance to point, squared, is:
R^2 = (x-8)^2 + (y-1.5)^2
= (x-8)^2 + (x^2 -0.5)^2

Solve for the x value when d(R^2)/dx = 0

d/dx [x^2 -16x +64 + x^4 -x^2 + 1/4] = 0
2x -16 +3x^3 -2x = 0
3x^3 = 16
x = 1.747
y = 4.053
Note that d/dx x^4 = 4x^3 not 3x^3
From there on, we have

2x - 16 + 4x^3 - 2x = 0
4x^3 = 16
x = cbrt(4)
y = cbrt(16)+1

Or, looking at things in another way, the normal line from point (p,q) on the curve will have the shortest distance to (8,1.5)

At any point (p,q) on the curve, the slope is 2p, so the normal line has slope -1/2p

Now we have a point and a slope:

(y-q)/(x-p) = -1/2p
y - p^2 - 1 = (p-x)/2p
1.5 = (p-8)/2p + p^2 + 1
3p = p - 8 + 2p^3 + 2p
2p^3 = 8
p^3 = 4
p = cbrt(4)
q = cbrt(16)+1
Thanks Steve for noticing my error
Similar Questions
    1. answers icon 2 answers
  1. Find the point on the graph of y = x2+1 that is closest to the point (3,1).d = √[(x-3)^2+(y-1)^2] d = √[(x-3)^2+(x^2+1-1)^2]
    1. answers icon 6 answers
  2. Given the graph of f(x) find the graph of 2 f( -3x - 2) - 4Is this correct??? First, compress the graph horizontally by 3.
    1. answers icon 0 answers
  3. Which graph represents a non-proportional relationship?(1 point) Responses Graph A Graph A Graph B Graph B Graph C Graph C Graph
    1. answers icon 2 answers
more similar questions