To find the length of the third side of the triangle, we first need to calculate the length of the second side.
The second side is the sum of the radius of the circle (1) and the radius of the circle plus 1.5 (1 + 1.5 = 2.5).
Now we can use the Pythagorean theorem to find the length of the third side.
1² + 2.5² = c²
1 + 6.25 = c²
7.25 = c²
c ≈ √7.25
c ≈ 2.7
Therefore, the length of the third side of the triangle is approximately 2.7. So the answer is 2.7.
Find the indicated length. Assume lines that appear to be tangent are tangent. Round to the nearest tenth if necessary.
Circle with triangle where the radius forms 1 side, 2nd side radius=1.5 plus 1
Find the indicated length. Assume lines that appear to be tangent are tangent. Round to the nearest tenth if necessary.
Circle with triangle where the radius forms 1 side, 2nd side radius=1.5 plus 1
2
2.5
1.5
3
1 answer