Asked by Janet
Find the first and second derivative - simplify your answer.
y=x/4x+1
I solved the first derivative and got 1/(4x+1)^2
Not sure if I did the first derivative right and not sure how to do the second derivative.
y=x/4x+1
I solved the first derivative and got 1/(4x+1)^2
Not sure if I did the first derivative right and not sure how to do the second derivative.
Answers
Answered by
MathMate
The first derivative of 1/(4x+1)² is correct.
For the second derivative, you just have to differentiate the first derivative with respect to x.
You can use the chain rule, substituting u=4x+1, and differentiate 1/u² using the power rule.
Let
f'(x)=1/(4x+1)², and
u=4x+1
d(f'(x))/dx
=d(1/u²)du * du/dx
=-2/u³ * (4)
=-8/(4x+1)³
For the second derivative, you just have to differentiate the first derivative with respect to x.
You can use the chain rule, substituting u=4x+1, and differentiate 1/u² using the power rule.
Let
f'(x)=1/(4x+1)², and
u=4x+1
d(f'(x))/dx
=d(1/u²)du * du/dx
=-2/u³ * (4)
=-8/(4x+1)³
Answered by
drwls
y = x/(4x +1)
dy/dx = [(4x+1) - 4x]/(4x +1)^2
= 1/(4x +1)^2
OK so far
d^2y/dx^2 = -2(4x +1)^-3 * 4
= -8/(4x+1)^3
dy/dx = [(4x+1) - 4x]/(4x +1)^2
= 1/(4x +1)^2
OK so far
d^2y/dx^2 = -2(4x +1)^-3 * 4
= -8/(4x+1)^3
Answered by
Janet
To solve the first step I used the equation
f'(x)=lim h-->0 f(x+h)-f(x)/h
Can I use this same formula to solve for the second derivative?
f'(x)=lim h-->0 f(x+h)-f(x)/h
Can I use this same formula to solve for the second derivative?
Answered by
drwls
Yes, if f"(x) replaces f'(x) on the left and f' replaces f on the right.
Answered by
Janet
I plug in the numbers into the formula that I used, but I don't get the same answer.
Here's what I did, maybe you can tell me what I did wrong. (likely a dumb algebra mistake)
f"(x) = lim-->0 f'(x+h)-f'(x)/h
=(1/4(x+h)+1)^2 - (1/4x+1)^2/h
=(1/16x^2+32xh+8x+8h+16h^2+1)-(1/16x^2+8x+1)/h
=16x^2+8x+1-(16x^2+32xh+16h^2+8x+8h+1)/
h(16x^2+32xh+16h^2+8x+8h+1)(16x^2+8x+1)
=-32xh-16h^2-8h /h(16x^2+32xh+16h^2+8x+8h+1)(16x^2+8x+1)
=-8(4x+1)/(16x^2+8x+1)(16x^2+8x+1)
=-8(4x+1)/(4x+1)^2
= -8/(4x+1)
I can't figure out where I went wrong.
Here's what I did, maybe you can tell me what I did wrong. (likely a dumb algebra mistake)
f"(x) = lim-->0 f'(x+h)-f'(x)/h
=(1/4(x+h)+1)^2 - (1/4x+1)^2/h
=(1/16x^2+32xh+8x+8h+16h^2+1)-(1/16x^2+8x+1)/h
=16x^2+8x+1-(16x^2+32xh+16h^2+8x+8h+1)/
h(16x^2+32xh+16h^2+8x+8h+1)(16x^2+8x+1)
=-32xh-16h^2-8h /h(16x^2+32xh+16h^2+8x+8h+1)(16x^2+8x+1)
=-8(4x+1)/(16x^2+8x+1)(16x^2+8x+1)
=-8(4x+1)/(4x+1)^2
= -8/(4x+1)
I can't figure out where I went wrong.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.