find the equation of a circle passing through the points p(0,-3) and q(4,0) and has its centre on the line x+2y=0

4 answers

The circle's equation is

(x-h)^2 + (y-k)^2 = r^2

You know that
(0-h)^2 + (-3-k)^2 = r^2
(4-h)^2 + (0-k)^2 = r^2
h+2k = 0

Now solve for h,k,r

I'd start with

h^2+(k+3)^2 = (h-4)^2+k^2
h = -2k, so

4k^2 + (k+3)^2 = (-2k-4)^2 + k^2
solve that for k, and then you can get h and r.
Thanks a lot steve .... appreciate that !!
But can i use elimination method to solve for h and k ?
sure - do whatever works for you.
Thanks for ur help
Similar Questions
  1. The equation of circle passing throughintersection points of two circles is given by S₁ + AS₂ = 0 (where S₁ and S2 are the
    1. answers icon 1 answer
  2. The equation of circle passing throughintersection points of two circles is given by S₁ + lamda S₂ = 0 (where S 1 and S2 are
    1. answers icon 1 answer
  3. Write the equation for the circle with center at (- 8, - 6) and radius of 10.(x+8)² + (y + 6)² = 10 (x+8)² + (y + 6)² = 100
    1. answers icon 3 answers
    1. answers icon 5 answers
more similar questions