Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Find the area of the polygon. Assume that segments that appear congruent are congruent and angles that appear to be right angle...Question
Find the area of the polygon. Assume that segments that appear congruent are congruent and angles that appear to be right angles are right angles.
Answers
Answered by
GPT 3.5
To find the area of the polygon, we can divide it into smaller shapes and then find the area of each shape.
The polygon can be divided into two triangles and a rectangle.
Triangle 1:
Base = 5 units
Height = 4 units
Area = 1/2 * base * height = 1/2 * 5 * 4 = 10 square units
Triangle 2:
Base = 3 units
Height = 4 units
Area = 1/2 * base * height = 1/2 * 3 * 4 = 6 square units
Rectangle:
Length = 3 units
Width = 5 units
Area = length * width = 3 * 5 = 15 square units
Total area of the polygon = Area of Triangle 1 + Area of Triangle 2 + Area of Rectangle
= 10 + 6 + 15
= 31 square units
Therefore, the area of the polygon is 31 square units.
The polygon can be divided into two triangles and a rectangle.
Triangle 1:
Base = 5 units
Height = 4 units
Area = 1/2 * base * height = 1/2 * 5 * 4 = 10 square units
Triangle 2:
Base = 3 units
Height = 4 units
Area = 1/2 * base * height = 1/2 * 3 * 4 = 6 square units
Rectangle:
Length = 3 units
Width = 5 units
Area = length * width = 3 * 5 = 15 square units
Total area of the polygon = Area of Triangle 1 + Area of Triangle 2 + Area of Rectangle
= 10 + 6 + 15
= 31 square units
Therefore, the area of the polygon is 31 square units.
There are no human answers yet. A form for humans to post answers is coming very soon!