Asked by Cecile

Find Maximum Likelihood Estimator of Gamma Distribution

Given:
f(x; β) = [ 1/( β^2) ] * x * e^(-x/ β) for 0 < x < infinity

EX = 2β and VarX = 2(β^2)

Questions:
1/First, I believe this is a gamma distribution with alpha = 2. Is that right?

2/Find Maximum likelihood estimator of β
-First, I get the likelihood fn L(β) = product of all the f(xi; β)

-After doing all arithmetic, I get L(β) = β^(-2n) * (x1 * x2 * … *xn) * e^[(-1/ β) * (x1 + x2 +…+xn)]

-Then I take the log function of L(β), I call it l(β), find derivative of this l(β), equate the derivative to 0 and solve.
I get the MLE is (1/n * (x1 + x2+ … + xn)) / 2 = (sample mean )/2.

** Am I correct till this point?

3/If the given said EX = 2 β, can I assume that X must be 2 β, and thus for the population, β is X / 2 ??

4/I think this MLE is not bias, but I get confused when I try to find the Variance of the MLE. If I let this MLE of β being β’, then for variance, I believe that I should find E(β’ ^ 2) – [ E(β’) ] ^2. But from here, my question is that should I use the fact that β’ is (sample mean) / 2, then just plug in and solve ? Or should I do integration?

Because I think since this distribution is continuous, isn’t it that E(anything) is integration of that “anything” with f(x)dx ??

Please help me. Thanks in advance.

Answers

There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions