Asked by juliet
find four consecutive integers such that the sum of the squares of the first two is 11 less than the square of the fourth
Answers
Answered by
Marth
Let x, x+1, x+2, x+3 be the four consecutive integers.
"the sum of the squares of the first two is 11 less than the square of the fourth"
x^2 + (x+1)^2 + 11 = (x+3)^2
x^2 + x^2 + 2x + 1 + 11 = x^2 + 6x + 9
2x^2 + 2x + 12 = x^2 + 6x + 9
x^2 - 4x + 3 = 0
(x-3)(x-1) = 0
x = 1, 3
So the four consecutive integers are 1, 2, 3, 4; or 3, 4, 5, 6.
"the sum of the squares of the first two is 11 less than the square of the fourth"
x^2 + (x+1)^2 + 11 = (x+3)^2
x^2 + x^2 + 2x + 1 + 11 = x^2 + 6x + 9
2x^2 + 2x + 12 = x^2 + 6x + 9
x^2 - 4x + 3 = 0
(x-3)(x-1) = 0
x = 1, 3
So the four consecutive integers are 1, 2, 3, 4; or 3, 4, 5, 6.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.