Find 1 1/3 • 2 1/5

Rewrite using improper fractions
Multiply
Rewrite as mixed number

1 answer

To multiply the mixed numbers \(1 \frac{1}{3}\) and \(2 \frac{1}{5}\), we can first rewrite them as improper fractions.

  1. Convert \(1 \frac{1}{3}\) to an improper fraction: \[ 1 \frac{1}{3} = \frac{3 \times 1 + 1}{3} = \frac{4}{3} \]

  2. Convert \(2 \frac{1}{5}\) to an improper fraction: \[ 2 \frac{1}{5} = \frac{5 \times 2 + 1}{5} = \frac{11}{5} \]

Now we can multiply the two improper fractions: \[ \frac{4}{3} \times \frac{11}{5} = \frac{4 \times 11}{3 \times 5} = \frac{44}{15} \]

Next, we need to convert \(\frac{44}{15}\) back to a mixed number. We do this by dividing 44 by 15: \[ 44 \div 15 = 2 \quad \text{(the whole number part)} \] with a remainder of \(44 - 15 \times 2 = 14\).

Thus, we can express \(\frac{44}{15}\) as a mixed number: \[ 2 \frac{14}{15} \]

So, the final answer is: \[ \boxed{2 \frac{14}{15}} \]

Similar Questions
  1. What is the correct first step when multiplying mixed numbers?A. Rewrite the mixed numbers as improper fractions. B. Eliminate
    1. answers icon 6 answers
  2. What is the correct first step when multiplying mixed numbers?A. Find a common denominator B. Rewrite the mixed numbers as
    1. answers icon 4 answers
  3. Evaluate.3 1/3−5 3/5 Hint: Rewrite the mixed numbers as improper fractions before subtracting. Make sure your answer has the
    1. answers icon 2 answers
  4. how you multoply 5 2/7 x 5/8 x 3 1/2 write the answer in simplest formFirst of all you have to change all mixed fractions to
    1. answers icon 0 answers
more similar questions