Figure LMNO is located at L (1, 1), M (2, 3), N (4, 3), and O (5, 1). Use coordinate geometry to best classify quadrilateral LMNO.

Kite
Parallelogram
Square
Trapezoid

1 answer

To classify the quadrilateral LMNO using its vertices \( L(1, 1), M(2, 3), N(4, 3), O(5, 1) \), we can calculate the lengths of its sides and the slopes of its sides.

  1. Calculate the lengths of the sides: \[ LM = \sqrt{(2 - 1)^2 + (3 - 1)^2} = \sqrt{1 + 4} = \sqrt{5} \] \[ MN = \sqrt{(4 - 2)^2 + (3 - 3)^2} = \sqrt{4} = 2 \] \[ NO = \sqrt{(5 - 4)^2 + (1 - 3)^2} = \sqrt{1 + 4} = \sqrt{5} \] \[ OL = \sqrt{(1 - 5)^2 + (1 - 1)^2} = \sqrt{16} = 4 \]

  2. Check if opposite sides are equal (for parallelogram):

    • \( LM = NO = \sqrt{5} \)
    • \( MN \neq OL \) ( \(2 \neq 4\) )

    Since the opposite sides are not equal, it cannot be a parallelogram.

  3. Calculate the slopes of the sides: \[ \text{slope of } LM = \frac{3 - 1}{2 - 1} = \frac{2}{1} = 2 \] \[ \text{slope of } MN = \frac{3 - 3}{4 - 2} = \frac{0}{2} = 0 \] \[ \text{slope of } NO = \frac{1 - 3}{5 - 4} = \frac{-2}{1} = -2 \] \[ \text{slope of } OL = \frac{1 - 1}{1 - 5} = \frac{0}{-4} = 0 \]

    • \( LM \) (slope = 2) and \( NO \) (slope = -2) are not parallel.
    • \( MN \) and \( OL \) (both slopes = 0) are parallel.

Since one pair of sides is parallel, LMNO can be classified as a trapezoid.

Therefore, the answer is: Trapezoid

Similar Questions
    1. answers icon 1 answer
  1. Figure 1: chairFigure 2: tree Figure 3: nut Figure 4: House which scale drawing is a dilation that increases the size of the
    1. answers icon 1 answer
    1. answers icon 1 answer
  2. Which figure would result from rotating and dilating Figure 1?(1 point) Responses Figure 2 Figure 2 Figure 3 Figure 3 Figure 5
    1. answers icon 1 answer
more similar questions