Asked by elley
f(x)= x, 0<and equal to x<1
= 0, x=1
is zero at x=0 and at x=1. it derivative is equal to 1 at every point between 0 and 1, so f' is never zero between 0 and 1, and the graph of f has no tangent parallel to the chord from (0,0) to (1,0).
why this does not contradict the Mean Value Theorem?
= 0, x=1
is zero at x=0 and at x=1. it derivative is equal to 1 at every point between 0 and 1, so f' is never zero between 0 and 1, and the graph of f has no tangent parallel to the chord from (0,0) to (1,0).
why this does not contradict the Mean Value Theorem?
Answers
There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.