f(x) = (-2 / (x^2 - 1) + (x / (x + 1))

Add the rationals and then simplify as much as possible. Show each step.

What is the domain of this function? Explain how you know.

1 answer

To add the rational expressions, we need to find a common denominator. In this case, the common denominator is (x^2 - 1)(x + 1).

First, let's simplify the individual fractions:

-2 / (x^2 - 1) = -2 / ((x + 1)(x - 1))

x / (x + 1) remains the same.

Now, we can rewrite the expression with the common denominator:

f(x) = (-2 / ((x + 1)(x - 1))) + (x / (x + 1))

To combine the fractions, we need to multiply the numerator of the second fraction by (x - 1) and the numerator of the first fraction by (x + 1):

f(x) = (-2 / ((x + 1)(x - 1))) + ((x(x - 1)) / ((x + 1)(x - 1)))

Now, we can simplify the numerator:

f(x) = (-2 + (x^2 - x)) / ((x + 1)(x - 1))

Combining like terms in the numerator:

f(x) = (x^2 - x - 2) / ((x + 1)(x - 1))

The domain of a rational function is the set of all real numbers excluding the values that make the denominator zero. In this case, we need to avoid (x + 1)(x - 1) = 0.

Setting each factor equal to zero:

x + 1 = 0 --> x = -1
x - 1 = 0 --> x = 1

Therefore, the domain of this function is all real numbers except x = -1 and x = 1. We exclude these values because they would make the denominator zero, resulting in undefined values.
Similar Questions
  1. Solve the following two mixed rationals questions:A.) 7689 - 91/103 B.) 5410 + 657/658
    1. answers icon 1 answer
  2. Mixed Rationals:Solve these question in two or three steps: 879 + 47/22 4591 - 133/61 -1 + 17/13 -68 - 18/7 -1297 + 763/512
    1. answers icon 1 answer
  3. f(x) = (-2 / (x^2) - 1) + (x / (x + 1))Add the rationals and then simplify as much as possible. Show each step. What is the
    1. answers icon 1 answer
  4. rationals numbers cannot ______________?a. be negavtive b. go on forever and ever c. be square roots of non-perfect squares d.
    1. answers icon 1 answer
more similar questions