Expand the expression to a polynomial in standard form:

(4x+5)(x^2 −2x+5)

1 answer

To expand the expression \((4x + 5)(x^2 - 2x + 5)\), we will use the distributive property (also known as the FOIL method for binomials). Each term in the first polynomial will be multiplied by each term in the second polynomial.

  1. Distributing \(4x\): \[ 4x \cdot x^2 = 4x^3 \] \[ 4x \cdot (-2x) = -8x^2 \] \[ 4x \cdot 5 = 20x \]

  2. Distributing \(5\): \[ 5 \cdot x^2 = 5x^2 \] \[ 5 \cdot (-2x) = -10x \] \[ 5 \cdot 5 = 25 \]

Now, we can combine all these results: \[ 4x^3 - 8x^2 + 20x + 5x^2 - 10x + 25 \]

Next, we combine the like terms:

  • The \(x^2\) terms: \(-8x^2 + 5x^2 = -3x^2\)
  • The \(x\) terms: \(20x - 10x = 10x\)

Putting it all together, the expanded polynomial in standard form is: \[ 4x^3 - 3x^2 + 10x + 25 \]

Thus, the final answer is: \[ \boxed{4x^3 - 3x^2 + 10x + 25} \]

Similar Questions
  1. expand the expression to a polynomial in standard form(2x^2+x+3)(3x^2-2x+6) and does it have parenthenses around it in standard
    1. answers icon 1 answer
  2. expand the expression to a polynomial in standard form(2x^2+x+3)(3x^2-2x+6) and does it have parenthenses around it in standard
    1. answers icon 1 answer
  3. expand the expression to a polynomial in standard form(2x^2+x+3)(3x^2-2x+6) and does it have parenthenses around it in standard
    1. answers icon 1 answer
    1. answers icon 7 answers
more similar questions