Asked by Ed
ex: Find the indicated derivative using implicit differentiation.
e^x/y^2= 8 + e^y; dy/dx
Please I need help and thank you very much!
e^x/y^2= 8 + e^y; dy/dx
Please I need help and thank you very much!
Answers
Answered by
Count Iblis
e^x/y^2= 8 + e^y ---->
e^x = 8 y^2 + y^2 e^y
So, in this case, we can solve for x in terms of y. Then you can simply consider x to be a fnction of y, differentiate w.r.t. y, yielding dx/dy and dy /dx is then 1/(dx/dy).
But in general, you can't solve for either x or y. Then, if you have an equation of the form:
f(x,y) = 0
that defines the relation between x and y, you can find dy/dx by computing the differential of f in terms of dx and dy and equating that to zero.
The infinitesimal change due to a change in x by dx and a change in y by dy is:
df = (df/dx) dx + (df/dy) dy
where df/dx is the so-called partial derivative of the function w.r.t. x, which is the derivative of f w.r.t. x while considering y to be a constant. And df/dy is the partial derivative of f w.r.t. y, here you keep x constant.
Then, if x, and y satisfy the equation, we want x + dx and y + dy to also satisfy the equation. Since f(x,y) was zero and f(x + dx, y+dy) are zero, the change in f must be zero as well, so we put df = 0:
(df/dx) dx + (df/dy) dy = 0 ----->
dy/dx = - (df/dx)/(df/dy)
e^x = 8 y^2 + y^2 e^y
So, in this case, we can solve for x in terms of y. Then you can simply consider x to be a fnction of y, differentiate w.r.t. y, yielding dx/dy and dy /dx is then 1/(dx/dy).
But in general, you can't solve for either x or y. Then, if you have an equation of the form:
f(x,y) = 0
that defines the relation between x and y, you can find dy/dx by computing the differential of f in terms of dx and dy and equating that to zero.
The infinitesimal change due to a change in x by dx and a change in y by dy is:
df = (df/dx) dx + (df/dy) dy
where df/dx is the so-called partial derivative of the function w.r.t. x, which is the derivative of f w.r.t. x while considering y to be a constant. And df/dy is the partial derivative of f w.r.t. y, here you keep x constant.
Then, if x, and y satisfy the equation, we want x + dx and y + dy to also satisfy the equation. Since f(x,y) was zero and f(x + dx, y+dy) are zero, the change in f must be zero as well, so we put df = 0:
(df/dx) dx + (df/dy) dy = 0 ----->
dy/dx = - (df/dx)/(df/dy)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.