Each cube in the figures below is one cubic unit.

Which figure does not have a volume of 48 cubic units? Select all that apply.

1 answer

There are multiple figures given, so we need to calculate the volume of each and see which one is not equal to 48 cubic units.

Figure 1: There are 6 cubes in the length, 4 cubes in the width, and 2 cubes in the height. So, the volume is:

$6 \times 4 \times 2 = 48$

Therefore, Figure 1 has a volume of 48 cubic units.

Figure 2: There are 8 cubes in the length, 2 cubes in the width, and 3 cubes in the height. So, the volume is:

$8 \times 2 \times 3 = 48$

Therefore, Figure 2 also has a volume of 48 cubic units.

Figure 3: There are 3 cubes in the length, 4 cubes in the width, and 4 cubes in the height. So, the volume is:

$3 \times 4 \times 4 = 48$

Therefore, Figure 3 also has a volume of 48 cubic units.

Figure 4: There are 4 cubes in the length, 4 cubes in the width, and 3 cubes in the height. So, the volume is:

$4 \times 4 \times 3 = 48$

Therefore, Figure 4 also has a volume of 48 cubic units.

Since all four figures have a volume of 48 cubic units, none of them are the answer. Therefore, the question may be flawed or incomplete.