Distance and the Pythagorean Theorem Practice

Complete this assessment to review what you've learned. It will not count toward your grade.
4 of 54 of 5 Items

Question
Find the distance between (2, 3)
and (−4, −9)
. Round your answer to the nearest hundredth, if necessary.(1 point)
units

1 answer

To find the distance between the points \((2, 3)\) and \((-4, -9)\), we can use the distance formula:

\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

where \((x_1, y_1) = (2, 3)\) and \((x_2, y_2) = (-4, -9)\).

Now we can substitute the values:

\[ d = \sqrt{((-4) - 2)^2 + ((-9) - 3)^2} \]

Calculating the differences:

\[ x_2 - x_1 = -4 - 2 = -6 \]

\[ y_2 - y_1 = -9 - 3 = -12 \]

Now we can substitute these values into the equation:

\[ d = \sqrt{(-6)^2 + (-12)^2} \]

Calculating the squares:

\[ d = \sqrt{36 + 144} = \sqrt{180} \]

Now we can simplify \(\sqrt{180}\):

\[ \sqrt{180} = \sqrt{36 \times 5} = \sqrt{36} \cdot \sqrt{5} = 6\sqrt{5} \]

Now we approximate the value of \(6\sqrt{5}\). Since \(\sqrt{5} \approx 2.236\):

\[ d \approx 6 \cdot 2.236 = 13.416 \]

Rounding to the nearest hundredth gives us:

\[ d \approx 13.42 \]

Thus, the distance between the points \((2, 3)\) and \((-4, -9)\) is approximately 13.42 units.