Determine the zeros of the quadratic function y = -x^2 + 16x - 39

1 answer

To find the zeros of the quadratic function \( y = -x^2 + 16x - 39 \), we can set the function equal to zero and solve for \( x \):

\[ -x^2 + 16x - 39 = 0 \]

To make it easier to work with, let's multiply the entire equation by -1:

\[ x^2 - 16x + 39 = 0 \]

Next, we can use the quadratic formula to find the zeros of the equation. The quadratic formula is given by:

\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

In our equation, \( a = 1 \), \( b = -16 \), and \( c = 39 \). Plugging these values into the formula:

  1. Calculate the discriminant \( b^2 - 4ac \):

\[ b^2 - 4ac = (-16)^2 - 4 \cdot 1 \cdot 39 = 256 - 156 = 100 \]

  1. Now, substitute the values into the quadratic formula:

\[ x = \frac{-(-16) \pm \sqrt{100}}{2 \cdot 1} = \frac{16 \pm 10}{2} \]

  1. This gives us two potential solutions:

\[ x = \frac{16 + 10}{2} = \frac{26}{2} = 13 \] \[ x = \frac{16 - 10}{2} = \frac{6}{2} = 3 \]

Thus, the zeros of the quadratic function are:

\[ x = 13 \quad \text{and} \quad x = 3 \]

Similar Questions
  1. 1. Determine the zeros of the quadratic function f(x)=(x+6)^2−9A. The zeros are (−3,0) and (−9,0) B. The zeros are
    1. answers icon 1 answer
  2. 1. Determine the zeros of the quadratic function f(x)=(x+6)^2−9A. The zeros are (−3,0) and (−9,0) B. The zeros are
    1. answers icon 1 answer
  3. The quadratic function y = –2(x + 4)2 – 3 with no real zeros is graphed.Determine the values of h and k that will change the
    1. answers icon 1 answer
  4. I have a test tomorrow and I really don't get this, please help me."Use transformations and the zeros of the quadratic function
    1. answers icon 1 answer
more similar questions