Derek has the opportunity to buy a money machine today. The money machine will pay Derek $14,068.00 exactly 20.00 years from today. Assuming that Derek believes the appropriate discount rate is 6.00%, how much is he willing to pay for this money machine?

1 answer

To determine how much Derek is willing to pay for the money machine today, we need to calculate the present value (PV) of the future payment he will receive. The formula for calculating the present value of a future payment is:

\[ PV = \frac{FV}{(1 + r)^n} \]

where:

  • \( PV \) is the present value,
  • \( FV \) is the future value,
  • \( r \) is the discount rate,
  • \( n \) is the number of years until payment.

Substituting the given values into the formula:

  • \( FV = 14,068.00 \)
  • \( r = 0.06 \) (which is 6%)
  • \( n = 20 \)

The calculation is as follows:

\[ PV = \frac{14,068.00}{(1 + 0.06)^{20}} \] \[ PV = \frac{14,068.00}{(1.06)^{20}} \] \[ PV = \frac{14,068.00}{3.207135472} \] \[ PV \approx 4,381.48 \]

Therefore, Derek should be willing to pay approximately $4,381.48 for the money machine today.

Similar Questions
  1. The author uses paragraphs eight, nine, and tenA to explain how the Dream Machine brought Derek back from ancient Greece. B to
    1. answers icon 1 answer
  2. The author uses paragraphs eight, nine, and tenResponses Ato explain how the Dream Machine brought Derek back from ancient
    1. answers icon 1 answer
    1. answers icon 2 answers
  3. Use the table to answer the question.Machine Output Work (J) Input Work (J) A 750 1,500 B 1,000 4,000 C 450 600 D 3,000 5,000
    1. answers icon 8 answers
more similar questions