To solve for the number of 15-ounce and 28-ounce cans that Denise bought using a system of equations, we define:
- \( x \) as the number of 15-ounce cans
- \( y \) as the number of 28-ounce cans
We are given two pieces of information:
- The total number of cans (15-ounce and 28-ounce) is 6.
- The total weight of the beans is 116 ounces.
Based on this information, we can set up the following equations:
-
The equation that represents the total number of cans is: \[ x + y = 6 \]
-
The equation that represents the total weight of the beans is: \[ 15x + 28y = 116 \]
Therefore, the correct system of equations that can be used to determine the number of 15-ounce cans and the number of 28-ounce cans Denise bought is:
\[ \begin{align*} x + y &= 6 \ 15x + 28y &= 116 \end{align*} \]
Thus, the first option is the correct one: x + y = 6. 15x + 28y = 116.