y' = -x^2 - 4x + 5 = -(y+5)(y-1)
y'=0 at x = -5,1
y'<0 for x < -5 or x>1; y'>0 for -5<x<1
y" = -2x-4
y"(-5) > 0, so y is concave up (minimum)
So now you have the steps for these three. Go back and review the section where it covers 1st and2nd derivative tests.
CURVE SKETCHING
π¦ = βπ₯3\3β 2π₯2 + 5π₯ β 2
ANSWER: πΆπ: π₯ = 1,β5 , IP : π₯ = β2, Decreasing on (ββ,β5) & (1, β), Increasing on (β5,1) , CU on
(ββ,β2) CD on (β2, β), Minimum point (β5,β106\3) , Maximum point (1,2\3)
I WANT THE STEPS PLEASE
1 answer