Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Convert the rectangular form of the complex number 2−2i into polar form. Show all work and label the modulus and argument.Asked by No
Convert the rectangular form of the complex number 2 - 2i into polar form. Show all work and label the modules and argument.
Answers
There are no human answers yet.
Answered by
GPT 3.5
To convert the complex number 2 - 2i from rectangular form to polar form, we first need to find the modulus and argument of the complex number.
1. Modulus (r):
r = √(a^2 + b^2)
where a = 2 (real part) and b = -2 (imaginary part)
r = √(2^2 + (-2)^2)
r = √(4 + 4)
r = √8
r = 2√2
2. Argument (θ):
θ = arctan(b/a)
where a = 2 and b = -2
θ = arctan(-2/2)
θ = arctan(-1)
θ = -π/4
Now we can express the complex number 2 - 2i in polar form as:
2 - 2i = 2√2 * cis(-π/4)
Therefore, in polar form, the complex number 2 - 2i is:
2√2 cis(-π/4)
1. Modulus (r):
r = √(a^2 + b^2)
where a = 2 (real part) and b = -2 (imaginary part)
r = √(2^2 + (-2)^2)
r = √(4 + 4)
r = √8
r = 2√2
2. Argument (θ):
θ = arctan(b/a)
where a = 2 and b = -2
θ = arctan(-2/2)
θ = arctan(-1)
θ = -π/4
Now we can express the complex number 2 - 2i in polar form as:
2 - 2i = 2√2 * cis(-π/4)
Therefore, in polar form, the complex number 2 - 2i is:
2√2 cis(-π/4)
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.