Asked by aimee
Consider the following shaded region.
Find the area S of this region if a = 6, b = 3. (Give an exact answer.)
The two graphs intercept at 0 and the other limit is not given. The integral is int(ax-x^2)-(bx. So y=ax+x^2 is the graph on top and y=bx is at the bottom.
Find the area S of this region if a = 6, b = 3. (Give an exact answer.)
The two graphs intercept at 0 and the other limit is not given. The integral is int(ax-x^2)-(bx. So y=ax+x^2 is the graph on top and y=bx is at the bottom.
Answers
Answered by
drwls
The upper limit of the integration will be where the curves intersect.
That is where 6x - x^2 = 3x.
x^2 -3x = x(x-3) = 0
x = 0 or 3
Now calculate
int(6x-x^2)-(3x)dx from 0 to 3
= int 3x - x^2 dx from 0 to 3
= [3x^2/2 - x^3/3]@x=3 - 0
(Since the value of the indefinite integral in brackets, at x = 0, is 0)
= 27/2 - 27/3 = 27/6 = 9/2
That is where 6x - x^2 = 3x.
x^2 -3x = x(x-3) = 0
x = 0 or 3
Now calculate
int(6x-x^2)-(3x)dx from 0 to 3
= int 3x - x^2 dx from 0 to 3
= [3x^2/2 - x^3/3]@x=3 - 0
(Since the value of the indefinite integral in brackets, at x = 0, is 0)
= 27/2 - 27/3 = 27/6 = 9/2
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.