Asked by Erica
Consider the differential equation: dy/dt=y/t^2
a) Show that the constant function y1(t)=0 is a solution.
b)Show that there are infinitely many other functions that satisfy the differential equation, that agree with this solution when t<=0, but that are nonzero when t>0 [Hint: you need to define these functions using language like " y(t)=...when t<=0 and y(t)=...when t>0 and "]
c) Why doesn't this example contradict the Uniqueness Theorem?
I'm trying to do part b and after I separated and integrated I got
ln|y|=(-1/t)+C
I'm not sure if I can get C with the solution they gave in part a)y1(t)=0.
Anyways, I get y(t)=Ce^-(1/t). I don't know where to go from there.
a) Show that the constant function y1(t)=0 is a solution.
b)Show that there are infinitely many other functions that satisfy the differential equation, that agree with this solution when t<=0, but that are nonzero when t>0 [Hint: you need to define these functions using language like " y(t)=...when t<=0 and y(t)=...when t>0 and "]
c) Why doesn't this example contradict the Uniqueness Theorem?
I'm trying to do part b and after I separated and integrated I got
ln|y|=(-1/t)+C
I'm not sure if I can get C with the solution they gave in part a)y1(t)=0.
Anyways, I get y(t)=Ce^-(1/t). I don't know where to go from there.
Answers
There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.