Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Consider a plane curve which is described in polar coordinates (r, @) by r = g(@) for @ for all [a,b] (@ representing theta). S...Asked by mark
Consider a plane curve which is described in polar coordinates (r, @) by r = g(@) for @ for all [a,b] (@ representing theta).
Starting from the known expression for the length of a plane curve in Cartesian coordinates and the equation x = rcos@, y = rsin@, obtain an integral expression in terms of the function g and the numbers a and b for the length of the given curve.
How would I do this question. Thanks.
Starting from the known expression for the length of a plane curve in Cartesian coordinates and the equation x = rcos@, y = rsin@, obtain an integral expression in terms of the function g and the numbers a and b for the length of the given curve.
How would I do this question. Thanks.
Answers
Answered by
Count Iblis
If ds is a length element, then:
ds^2 = dx^2 + dy^2
In polar coordinates:
x = r cos(theta)
y = r sin(theta)
Using Leibnitz rule:
dx = cos(theta)dr -sin(theta) r dtheta
dy = sin(theta)dr +cos(theta) r dtheta
ds^2 = dx^2 + dy^2 =
[cos^2(theta) + sin^2(theta)] dr^2 +
[cos^2(theta) + sin^2(theta)] r^2 dtheta^2 +
2 [sin(theta)cos(theta) - cos(theta)sin(theta)] r dr dtheta.
The contents of first two square brackets are equal to one, the last is zero. So, we have:
ds^2 = dr^2 + r^2 dtheta^2
You could have imediately written down this equation. At any point along the curve, dr is a length element in the radial direction and r dtheta is the length element in the tangential direction, which is orthogonal to the radial direction. So, by Pythagoras' theorem, ds^2 is the sum of the suares of the two length elements.
It then follows that:
ds = sqrt[dr^2 + r^2 dtheta^2] =
sqrt[(dr/dtheta)^2 + r^2] dtheta
Integrating both sides over theta from theta = a to theta = b then gives the curve length.
ds^2 = dx^2 + dy^2
In polar coordinates:
x = r cos(theta)
y = r sin(theta)
Using Leibnitz rule:
dx = cos(theta)dr -sin(theta) r dtheta
dy = sin(theta)dr +cos(theta) r dtheta
ds^2 = dx^2 + dy^2 =
[cos^2(theta) + sin^2(theta)] dr^2 +
[cos^2(theta) + sin^2(theta)] r^2 dtheta^2 +
2 [sin(theta)cos(theta) - cos(theta)sin(theta)] r dr dtheta.
The contents of first two square brackets are equal to one, the last is zero. So, we have:
ds^2 = dr^2 + r^2 dtheta^2
You could have imediately written down this equation. At any point along the curve, dr is a length element in the radial direction and r dtheta is the length element in the tangential direction, which is orthogonal to the radial direction. So, by Pythagoras' theorem, ds^2 is the sum of the suares of the two length elements.
It then follows that:
ds = sqrt[dr^2 + r^2 dtheta^2] =
sqrt[(dr/dtheta)^2 + r^2] dtheta
Integrating both sides over theta from theta = a to theta = b then gives the curve length.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.