Asked by Mathslover Please help
                Consider a glass with full of water of mass density ρ=1,000 kg/m3 and height h=20 cm. There's a circular hole in the bottom of the glass of radius r. The maximum pressure that pushes the water back into the hole is roughly (on the order of) p=σ/r, where σ=0.072 N/m is the water's surface tension. This extra pressure comes from the curvature of the water surface, and it tends to flatten out the surface.
Estimate the largest possible radius of the hole in μm such that water doesn't drip out of the glass.
Details and assumptions
The gravitational acceleration is g=−9.8 m/s2 and the glass is placed vertically.
Neglect any other effects that can influence the pressure from other external sources.
            
        Estimate the largest possible radius of the hole in μm such that water doesn't drip out of the glass.
Details and assumptions
The gravitational acceleration is g=−9.8 m/s2 and the glass is placed vertically.
Neglect any other effects that can influence the pressure from other external sources.
Answers
                    Answered by
            hans
            
    36.73
    
                    Answered by
            dr. hullins
            
    wrong,its 54.5
    
                    Answered by
            Mathslover Please help
            
    its wrong tell the right answer please
    
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.