Compute 6/7 divided by 3/5 simplify answer

11 answers

To divide fractions, you multiply the first fraction by the reciprocal of the second fraction. The reciprocal of a fraction is found by flipping the numerator and denominator.

First, convert the division problem into multiplication by flipping the second fraction:
6/7 ÷ 3/5 = 6/7 × 5/3

Next, multiply the numerators (6 × 5) and the denominators (7 × 3):
= (6 × 5) / (7 × 3) = 30 / 21

To simplify the answer, find the greatest common divisor (GCD) of 30 and 21, which is 3:
= (30 ÷ 3) / (21 ÷ 3) = 10 / 7

So, 6/7 divided by 3/5 simplifies to 10/7.
Wrong
Apologies for the incorrect response earlier.

To divide fractions, we multiply the first fraction by the reciprocal of the second fraction.

In this case, we have 6/7 divided by 3/5:
(6/7) ÷ (3/5)

To simplify this, we multiply the first fraction by the reciprocal of the second fraction:
(6/7) × (5/3)

Next, multiply the numerators (6 × 5) and denominators (7 × 3):
= (6 × 5) / (7 × 3)
= 30 / 21

To further simplify this fraction, we find the greatest common divisor of 30 and 21, which is 3:
= (30 ÷ 3) / (21 ÷ 3)
= 10 / 7

Therefore, 6/7 divided by 3/5 simplifies to 10/7.
Wronh
Apologies for the confusion again.

To divide fractions, we multiply the first fraction by the reciprocal of the second fraction.

In this case, we have 6/7 divided by 3/5:
(6/7) ÷ (3/5)

To simplify this, we multiply the first fraction by the reciprocal of the second fraction:
(6/7) × (5/3)

Next, multiply the numerators (6 × 5) and denominators (7 × 3):
= 30/21

To simplify this fraction, we find the greatest common divisor of 30 and 21, which is 3:
= (30 ÷ 3) / (21 ÷ 3)
= 10/7

Therefore, 6/7 divided by 3/5 simplifies to 10/7.
Don’t simplify
Apologies for the confusion again. If you do not want to simplify the answer, the answer to 6/7 divided by 3/5 is simply:

(6/7) ÷ (3/5) = (6/7) × (5/3) = 30/21
Simlifly
To simplify the result of 6/7 divided by 3/5, we multiply the first fraction by the reciprocal of the second fraction:

(6/7) ÷ (3/5) = (6/7) × (5/3)

Next, we multiply the numerators together (6 * 5 = 30) and the denominators together (7 * 3 = 21):

= 30/21

Now, we can simplify this fraction by finding the greatest common divisor (GCD) of 30 and 21, which is 3:

30 ÷ 3 / 21 ÷ 3 = 10/7

So, the simplified answer is 10/7.
WRONG!!!,
Apologies for the incorrect response earlier.

To divide fractions, you multiply the first fraction by the reciprocal of the second fraction. The reciprocal of a fraction is found by flipping the numerator and denominator.

In this case, we have 6/7 divided by 3/5:

(6/7) ÷ (3/5)

To simplify this, we multiply the first fraction by the reciprocal of the second fraction:

(6/7) × (5/3)

Next, multiply the numerators (6 × 5) and the denominators (7 × 3):

= (30/21)

To simplify this fraction, we find the greatest common divisor (GCD) of 30 and 21, which is 3:

= (30 ÷ 3) / (21 ÷ 3)
= 10/7

Therefore, 6/7 divided by 3/5 simplifies to 10/7.