Complete this assessment to review what you've learned. It will not count toward you

Two sides of a triangle measure 34 and 51. Complete the inequality that indicates the possible values of the third side of the triangle using the Triangle Inequality Theorem. (1 point)

Check answer Remaining Attempts: 3

1 answer

The Triangle Inequality Theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side, and vice versa.

Let the lengths of the two known sides be \( a = 34 \) and \( b = 51 \), and let \( c \) be the length of the third side. According to the Triangle Inequality Theorem:

  1. \( a + b > c \)
  2. \( a + c > b \)
  3. \( b + c > a \)

Now, applying the values:

  1. \( 34 + 51 > c \) → \( 85 > c \) → \( c < 85 \)
  2. \( 34 + c > 51 \) → \( c > 51 - 34 \) → \( c > 17 \)
  3. \( 51 + c > 34 \) → \( c > 34 - 51 \) → This is always true since \( 34 - 51 \) is negative.

Combining the inequalities from steps 1 and 2, we find:

\[ 17 < c < 85 \]

Thus, the complete inequality indicating the possible values of the third side \( c \) is:

17 < c < 85

Similar Questions
  1. Sides of Similar Figures PracticeComplete this assessment to review what you've learned. It will not count toward your grade. 5
    1. answers icon 1 answer
  2. Review of the Coordinate Plane & Slope PracticeComplete this assessment to review what you’ve learned. It will not count
    1. answers icon 4 answers
  3. Review of the Coordinate Plane & Slope PracticeComplete this assessment to review what you’ve learned. It will not count
    1. answers icon 9 answers
  4. Circumference & Area of Circles PracticeComplete this assessment to review what you've learned. It will not count toward your
    1. answers icon 1 answer
more similar questions