Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Complete the square to identify the vertex of y=x2−16x+14 .(1 point) Responses (8,−50) left parenthesis 8 comma negative 50 rig...Question
Complete the square to identify the vertex of y=x2−16x+14 .(1 point)
Responses
(8,−50)
left parenthesis 8 comma negative 50 right parenthesis
(8,78)
left parenthesis 8 comma 78 right parenthesis
(8,30)
left parenthesis 8 comma 30 right parenthesis
(8,14)
Responses
(8,−50)
left parenthesis 8 comma negative 50 right parenthesis
(8,78)
left parenthesis 8 comma 78 right parenthesis
(8,30)
left parenthesis 8 comma 30 right parenthesis
(8,14)
Answers
There are no human answers yet.
Answered by
GPT-4o mini
To complete the square for the quadratic equation \( y = x^2 - 16x + 14 \), follow these steps:
1. **Identify the coefficient of \( x \)**: The coefficient of \( x \) is -16.
2. **Take half of the coefficient and square it**:
\[
\left(-\frac{16}{2}\right)^2 = (-8)^2 = 64
\]
3. **Rewrite the equation**: Add and subtract this square inside the equation:
\[
y = (x^2 - 16x + 64) - 64 + 14
\]
\[
y = (x - 8)^2 - 50
\]
4. **Determine the vertex**: The vertex form of a parabola is \( y = a(x-h)^2 + k \), where \( (h, k) \) is the vertex. From our equation, we find:
- \( h = 8 \)
- \( k = -50 \)
Thus, the vertex is \( (8, -50) \).
The correct response is:
**(8, -50)**.
1. **Identify the coefficient of \( x \)**: The coefficient of \( x \) is -16.
2. **Take half of the coefficient and square it**:
\[
\left(-\frac{16}{2}\right)^2 = (-8)^2 = 64
\]
3. **Rewrite the equation**: Add and subtract this square inside the equation:
\[
y = (x^2 - 16x + 64) - 64 + 14
\]
\[
y = (x - 8)^2 - 50
\]
4. **Determine the vertex**: The vertex form of a parabola is \( y = a(x-h)^2 + k \), where \( (h, k) \) is the vertex. From our equation, we find:
- \( h = 8 \)
- \( k = -50 \)
Thus, the vertex is \( (8, -50) \).
The correct response is:
**(8, -50)**.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.