Asked by v
can i use factoring to simplify this trig identity?
the problem is sinx + cotx * cosx i know the answer is cscx and i know how to get it but i want to know if i can do factoring to get it bc i tried to but it wont give me the answer .
this is the step i went through:
1) sinx + cotx * cosx turns into sinx +(cosx/sinx)*cosx
2) i try to factor out sinx so that i would get sinx(1+ cosx * cosx)
3) that left me with sinx(1+cos^(2) x) that's where i im lost can anyone enlighten me plz
the problem is sinx + cotx * cosx i know the answer is cscx and i know how to get it but i want to know if i can do factoring to get it bc i tried to but it wont give me the answer .
this is the step i went through:
1) sinx + cotx * cosx turns into sinx +(cosx/sinx)*cosx
2) i try to factor out sinx so that i would get sinx(1+ cosx * cosx)
3) that left me with sinx(1+cos^(2) x) that's where i im lost can anyone enlighten me plz
Answers
Answered by
Steve
cot = cos/sin, so you have
sin + cos^2/sin
= (sin^2+cos^2)/sin
= 1/sin
= csc
sin + cos^2/sin
= (sin^2+cos^2)/sin
= 1/sin
= csc
Answered by
v
im well aware of that steve thank you for answering but i really wanted to know was is it at all possible to use factoring to solve this like i have up there
Answered by
Steve
I don't see any way to use factoring. You don't in fact come up with
sin(1+cos^2)
because you have that pesky 1/sin under the cos^2.
If you try to fractor out the sin, you get
sin(1+cos^2/sin^2)
and again you end up with sin^2+cos^2 on top.
sin(1+cos^2)
because you have that pesky 1/sin under the cos^2.
If you try to fractor out the sin, you get
sin(1+cos^2/sin^2)
and again you end up with sin^2+cos^2 on top.
Answered by
Reiny
We could do some " silly" factoring
sinx + (cosx/sinx)(cosx)
= sinx + cos^2 x (sinx)^-1
= (sinx)^-1 (sin^2 x + cos^2 x)
= (sinx)^-1
= 1/sinx
= cscx
sinx + (cosx/sinx)(cosx)
= sinx + cos^2 x (sinx)^-1
= (sinx)^-1 (sin^2 x + cos^2 x)
= (sinx)^-1
= 1/sinx
= cscx
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.