Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Call a relation R “orbital” if xRy and yRz imply zRx. Prove that R is an equivalence relation if and only R is both reflexive a...Asked by Dave
Call a relation R “orbital” if x R yand y R zimply z R x. Prove that R is an equivalence relation if and only R is both reflexive and orbital. (Note that this is an “if and only if” statement, which is biconditional. So there are actually two different implications to show here.)
This is what I did, but I don't think that it is the right approach:
If R is an equivalence relation then R has to be reflexive, symmetric, and transitive. This means that xRx which is reflexive. Also, xRy and yRx which means that it is symmetric.Then, R is also orbital or transitive if xRy and yRz which implies that zRx. This means that R is an equivalence relation. If R is reflexive then xRx. If R is orbital, then xRy and yRz which implies that xRz. This means that R is an equivalence relation.
This is what I did, but I don't think that it is the right approach:
If R is an equivalence relation then R has to be reflexive, symmetric, and transitive. This means that xRx which is reflexive. Also, xRy and yRx which means that it is symmetric.Then, R is also orbital or transitive if xRy and yRz which implies that zRx. This means that R is an equivalence relation. If R is reflexive then xRx. If R is orbital, then xRy and yRz which implies that xRz. This means that R is an equivalence relation.
Answers
There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.