Calculate the magnitudes of the gravitational forces exerted on the Moon by the Sun and by the Earth when the two forces are in direct competition, that is, when the Sun, Moon and Earth are aligned with the Moon between the Sun and the Earth. This alignment corresponds to a solar eclipse.) Does the orbit of the Moon ever actually curve away from the Sun, toward the Earth? (Please give your answer to three significant figures.)
I used G m1 m2/r^2 to get the forces, for the force between the Earth and the moon I did:
((6.67e-11)(5.97e24)(7.35e22))/(1.737e6 - 6.37e6)^2
and I got 1.36e24 N
To get the r value I substracted the radii... do I have to add them?
For the force between the Sun and the Moon, I used the distance from earth to the sun and substracted it from the distance between moon to earth.
((1.737e6 - 6.37e6)- (6.96e8 -6.37e6))=6.95e8 m
and then for the moon to sun force I computed:
((6.67e-11)(7.35e22)(1.9891e30))/(1.737e6 - 6.37e6)^2
and I got 1.40e34 N...
These answers are not right but I'm not sure what I'm doing wrong...
1 answer
see other post.