To find the length between the two points using the Pythagorean Theorem, we will use the following formula:
c = √(a^2 + b^2)
In this case, the two points are located at coordinates (9, 6) and (40, 5).
a = 40 - 9 = 31
b = 5 - 6 = -1
Now we can plug these values into the formula:
c = √(31^2 + (-1)^2)
c = √(961 + 1)
c = √962
c ≈ 31
Therefore, the length between the two points is approximately 31 units.
Apply the Pythagorean Theorem to find the length between
the two points. Round your answer to the nearest hundredth, if
necessary.
(1 point)
9
6:40
5.57
○ 41
1 answer