Asked by avm
Anwar is stringing wooden beads on a leather thong. He has twelve beads of various sizes and will tie a knot in the thong when he has put them all onto it. How many different necklaces could he make? (Hint: Does the exact opposite order of beads produce a different necklace?)
Answers
Answered by
Reiny
This type of problem always leads to a lively discussion.
Problem: can the beads be moved past the claps ?
If so, does moving one or more beads from one side to the other without opening the clasp constitute a different necklace?
The general answer to that is no.
(Think of some keys on a keyring.
Flipping the keys around on the ring does not produce a different keyring arrangement, nor does turning the keyring over, only opening the ring itself will produce a new keychain. )
So here is my solution:
Use one of the beads as a "marker", then the others can be arranged in 11! ways.
We then have to divide by 2 to eliminate the opposite order of beads which would not be a new necklace
so I would say: 11!/2
Problem: can the beads be moved past the claps ?
If so, does moving one or more beads from one side to the other without opening the clasp constitute a different necklace?
The general answer to that is no.
(Think of some keys on a keyring.
Flipping the keys around on the ring does not produce a different keyring arrangement, nor does turning the keyring over, only opening the ring itself will produce a new keychain. )
So here is my solution:
Use one of the beads as a "marker", then the others can be arranged in 11! ways.
We then have to divide by 2 to eliminate the opposite order of beads which would not be a new necklace
so I would say: 11!/2
Answered by
Logan
Its 12!/2 man
Answered by
Jeejay
12!/2
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.